
PIR-PSI: SCALING PRIVATE CONTACT DISCOVERY

Daniel Demmler
Peter Rindal

Mike Rosulek
Ni Trieu

PETS 2018

• Contact discovery tells social network users which of their contacts are in the social network

• An insecure naïve hashing-based protocol is used in practice

• Vulnerable to

• Brute-force attacks (for small input domain, e.g. phone numbers)

• Comparison with hashes from later sessions

Motivation – Application: Contact Discovery

2

Hashes of
User Contacts

Matching
WhatsApp
Contacts

• Contact Discovery should be efficient and scalable, and protect the privacy of user inputs.

• It runs once when a user initially joins a social network

• … and periodically to find contacts that join the social network later on.

Motivation – Application: Private Contact Discovery

3

WhatsApp
Customers

User
Contacts

WhatsApp
Contacts

PIR-PSI

𝑋 𝑌

𝑋 ∩ 𝑌

Private Set Intersection (PSI)

4

Private Set Intersection (PSI)

5

𝑋 𝑌

𝑋 ∩ 𝑌

PSI

“Receiver” “Sender”
Ideal World

PSI for Contact Discovery

6

𝑋 = 𝑛 ≪ |𝑌| = 𝑁

𝑋 ∩ 𝑌

𝑋 𝑌
𝑋 ∩ 𝑌

• Communication linear in both sets 𝑂 𝑁 + 𝑛

• What about 𝑁 ≫ 𝑛?

• Insecure solution
• Send small set to other party
• Communication = 𝑂 min 𝑁, 𝑛

• PIR-PSI

• Communication = 𝑂 𝑛 log
𝑁 log 𝑛

𝑛

• Client Computation = 𝑂 𝑛 log
𝑁 log 𝑛

𝑛
AES operations

• Server Computation = 𝑂 𝑁 log𝑛 AES operations

Status-Quo vs. PIR-PSI

7

Private Contact Discovery
𝑋 =
𝑛 Contacts

𝑌 =
𝑁 Customers

𝑋 ∩ 𝑌

PIR-PSI

Plaintext Database Query

8

𝑖

𝑦𝑖

𝐷𝐵

TLS

𝑖
𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

Private Information Retrieval (PIR)

9

𝑖 𝐷𝐵

𝐷𝐵[𝑖]

PIR

Ideal World𝑖 𝐷𝐵
𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

2-Server PIR [CGKS95]

10

𝐷𝐵

#2

#1

𝐷𝐵

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

2-Server PIR [CGKS95]

11

𝐷𝐵

#2

𝑞1

𝑟1

𝑟2

𝑞2

no collusion!

𝑟1 ⊕ 𝑟2 = DB i

𝑖 #1

𝐷𝐵

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

Example: 2-Server Linear Summation PIR [CGKS95]

12

𝐷𝐵

𝐷𝐵

#2𝑟1 ⊕ 𝑟2 = DB 2

#1

𝐷𝐵

𝑖 = 2 ⇒ 𝑞 = 001 000
𝑞1 chosen at random
𝑞2 = 𝑞 ⊕ 𝑞1

𝑟𝑖 = 𝑞𝑖 ⋅ 𝐷𝐵

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

• Point Functions: 𝑃𝐹 = {𝑓𝑖,𝑣: 𝑓𝑖,𝑣 𝑖 = 𝑣,

𝑓𝑖,𝑣 𝑥 = 0 ∀ 𝑥 ≠ 𝑖}.

• Distributed PFs allow 2 parties the secret-
shared PF evaluation, without revealing 𝑖, 𝑣.

• DPFs are described by short keys 𝑘1, 𝑘2 of
length 𝑂 log𝑁 , where 𝑁 is the domain of 𝑖.

• By using 𝑣 = 1, i.e., a DPF returning 1 only at
index 𝑖, we can express the plain text query 𝑞
and thus build 2-server PIR with 𝑂 log𝑁
communication complexity.

• Instantiated efficiently with AES.

PIR from Distributed Point Functions (DPFs)

13

𝑘1

𝑘2

Intuition:
DPF Key Expansion

𝐾1

𝐾2

Designated-Output PIR

14

𝐷𝐵

𝐷𝐵

#2

𝑞1, 𝑚

𝑞2

𝑖, 𝑚 #1

𝐷𝐵

𝑟2 ⊕ 𝑟1 ⊕ 𝑚
= DB i ⊕𝑚

𝑟1 ⊕ 𝑚

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

PIR Private Equality Test

15

𝐷𝐵

𝐷𝐵

#2

𝑞1, 𝑚

𝑞2

𝑥, 𝑖, 𝑚 #1

𝐷𝐵

𝑟2 ⊕ 𝑟1 ⊕ 𝑚
= DB i ⊕𝑚PEQ𝑥 ⊕𝑚

𝑥 == 𝐷𝐵[𝑖]

𝑟1 ⊕ 𝑚

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

• Server performs Cuckoo hashing.

Cuckoo Hashing

16

𝑦1

ℎ(𝑦𝑁)

ℎ(𝑦2)

ℎ(𝑦1)

…

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

• Server performs Cuckoo hashing.

Cuckoo Hashing

17

𝑦1

𝑦2
ℎ(𝑦𝑁)

ℎ(𝑦2)

ℎ(𝑦1)

…

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

• Server performs Cuckoo hashing.

Cuckoo Hashing

18

𝑦1

𝑦2

𝑦3

ℎ(𝑦𝑁)

ℎ(𝑦2)

ℎ(𝑦1)

…

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

• Server performs Cuckoo hashing.

Cuckoo Hashing

19

𝑦1

𝑦2

𝑦3

𝑦𝑁

𝑦4

ℎ(𝑦𝑁)

ℎ(𝑦2)

ℎ(𝑦1)

…

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁

• Server performs Cuckoo hashing.

Cuckoo Hashing

20

𝑦1

𝑦2

𝑦3

𝑦𝑁

𝑦4

← Collision: ℎ 𝑦1 = ℎ(𝑦𝑁)

• Server performs Cuckoo hashing.

• To avoid collisions: use multiple hash functions - in this example: ℎ, ℎ′.

• In our implementation we used 3 hash functions and a cuckoo expansion factor of 𝑒 ≈ 1.4 for
a cuckoo failure probability of 2−20 during one-time initialization.

Cuckoo Hashing

21

𝑦2

𝑦3

𝑦4

ℎ′(𝑦1)

ℎ′(𝑦2)

𝑦1 𝑦𝑁

• Every element can be located in two possible bins.

• The client computes all hash functions for every element.

Cuckoo Hashing

22

𝑥1

𝑥2

𝑥𝑛

𝑥3

𝑥4

𝑥4 𝑥𝑛

𝑥1

𝑥3

𝑥2

𝑦2

𝑦3

𝑦4

𝑦1

𝑦𝑁

• Every element can be located in two possible bins.

• To check if the server holds 𝑥1, the client runs a PIR-PEQ with the 2nd and 4th bin.

• In the full protocol: instead of single PIR-PEQ, we run all of them together in a PSI protocol.

Cuckoo Hashing

23

𝑦2

𝑦3

𝑦4

𝑦1

𝑦𝑁

ℎ′(𝑦1)

ℎ(𝑦1)

𝑥1

𝑥2

𝑥𝑛

𝑥3

𝑥4

𝑥4 𝑥𝑛

𝑥1

𝑥3

𝑥2

1. Cuckoo Hashing

• Both servers compute the same cuckoo hash table for their 𝑁 elements.

2. DPF-PIR Query

• The client delegated extraction of 𝑛 elements from the cuckoo table.

3. Oblivious Shuffle

• One server receives the other server’s masked output and obliviously
shuffles the PIR results to hide which Cuckoo hash function was used.

4. Small PSI

• A standard PSI protocol is used to determine intersection.

PIR-PSI Overview

24

𝑦2

𝑦3

𝑦4

𝑦1

𝑦𝑁

𝑦1

𝑦2

𝑦3

𝑦4

…

𝑦𝑁ℎ(𝑦𝑁)

ℎ(𝑦2)

ℎ(𝑦1)

…

ℎ′(𝑦1)

ℎ(𝑦1)?

PSI

𝑥1

𝑥2

𝑥𝑛

𝑥3

𝑥4

𝑥4 𝑥𝑛

𝑥1

𝑥3

𝑥2

𝑦3

𝑦4

𝑦1

𝑦𝑁

• Binning
• Instead of running full domain DPFs, we partition the server

cuckoo table into bins and a smaller DPFs per bin.

• Parallelization!

• Batching
• Instead of running DPF queries separately,

run all queries in each bin in parallel.

• Only a single pass over the cuckoo table for multiple queries.

• Larger PIR Blocks
• PIR queries can return multiple cuckoo table entries.

• less communication, more computation in PSI.

Optimizations

25

𝑦1

𝑦2

𝑦3

𝑦4
…
𝑦𝑁

…

𝑦𝑁

𝑦1

𝑦2

𝑦1

𝑦2

PIR-PSI with 3 PIR Servers

26

𝐷𝐵

#1

𝐷𝐵2

#2

𝐷𝐵3

#3

𝑘1, 𝑚

𝑘2

𝑘2

𝐷𝐵 = 𝐷𝐵2 ⊕𝐷𝐵3
(𝐾1⋅ 𝐷𝐵) ⊕𝑚

𝐾2 ⋅ 𝐷𝐵2

𝐾3 ⋅ 𝐷𝐵3

(𝐾2⋅ 𝐷𝐵2) ⊕ (𝐾2 ⋅ 𝐷𝐵3) ⊕
𝐾1 ⋅ 𝐷𝐵 ⊕𝑚
=
𝐾2 ⋅ 𝐷𝐵2 ⊕𝐷𝐵3 ⊕
𝐾1 ⋅ 𝐷𝐵 ⊕𝑚
=
𝐾2 ⋅ 𝐷𝐵 ⊕ 𝐾1 ⋅ 𝐷𝐵 ⊕𝑚
=
𝐷𝐵 𝑖 ⊕𝑚

• Communication and running time for
𝑛 = 1 024 client elements and server
set sizes 𝑁 ∈ {220, 224, 226, 228}.

• Benchmarked in Gigabit LAN, on
1 machine with 36 x 2.3 GHz.
Implementation set to use 4 threads.

• Client computation is ≈ 10% of total.

• Parameters for communication /
computation trade-off

PIR-PSI Performance

27

0.1; 2.1

0.36; 8.61

0.94; 3.85

0.72; 12.7

3.65; 4.28

1.6; 28.3

13.22; 4.93

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14

Co
m

m
un

ic
at

io
n

in
 M

iB

Running time in seconds

2^20 2^24 2^26 2^28

• Combination of DPF-based PIR with state-of the art PSI to achieve scalable contact discovery.

• Efficient open-source C++ implementation on Github: github.com/osu-crypto/libPSI

• Many more details in the paper!

• Security Analysis

• Cuckoo Hashing Parameters

• Detailed performance analysis and comparison with related work

• Extensions

Conclusion

28

https://github.com/osu-crypto/libPSI

Thank you!

Daniel Demmler
Peter Rindal

Mike Rosulek
Ni Trieu

• Some icons are made by Freepik from flaticon.com

References

30

• Extra / Backup slides coming up next…

31

[DeCristofaroKimTsudik10]
Malicious secureDiffie-Hellman

A Sampling of PSI Over the Decades

32

[Meadows86]
Private equality test

[HubermanFranklinHogg99]
Private equality test to PSI

1985 1990 1995 2000 2005 2010 2015 2020

𝑥𝛼𝛽 = 𝑦𝛽𝛼

⇒ 𝑥 = 𝑦

[FreedmanNissimPinkas04]
Hash table base PSI

[DachmanMalkinRaykovaYung09]
Malicious secure

Oblivious
Polynomial
Evaluation

[NaorPinkas99]
Semi-honest PSI

A Sampling of PSI Over the Decades

33

1985 1990 1995 2000 2005 2010 2015 2020

[GhoshJasper17]
Malicious secure

𝑄 𝑥 ≔ (𝑥 − 𝑦)

𝑄 𝑥 = 0
⇒ 𝑥 = 𝑦

[HuangEvansKatz12]
Garbled Circuit based PSI

Generic MPC

A Sampling of PSI Over the Decades

34

1985 1990 1995 2000 2005 2010 2015 2020

[DongChenWen13]
Oblivious Transfer +
Bloom filter base PSI

[RindalRosulek17a]
Malicious Oblivious Transfer +

Bloom filter base PSI

Oblivious Transfer
& Bloom filter

A Sampling of PSI Over the Decades

35

1985 1990 1995 2000 2005 2010 2015 2020

A Sampling of PSI Over the Decades

36

1985 1990 1995 2000 2005 2010 2015 2020

[FaginNaorWinkler96]
Private equality test

[RindalRosulek17b]
Hash Table based PSI from OT

Oblivious
Transfer
Encoding

[KKRT16]
Element-wise OT encoding

[PinkasSchneiderZohner14, …]
Cuckoo hashing PSI

[HuangEvansKatz12]
Garbled Circuit based PSI

[DeCristofaroKimTsudik10]
Malicious secure

[FreedmanNissimPinkas04]
Hash table base PSI

[DachmanMalkinRaykovaYung09]
Malicious secure

[DongChenWen13]
Oblivious Transfer +
Bloom filter base PSI

[RindalRosulek17a]
Malicious Oblivious Transfer +

Bloom filter base PSI

Oblivious Transfer
& Bloom filter

Generic MPC

Diffie-Hellman

Oblivious
Polynomial
Evaluation

[NaorPinkas99]
Semi-honest PSI

A Sampling of PSI Over the Decades

37

[Meadows86]
Private equality test

[HubermanFranklinHogg99]
Private equality test to PSI

[FaginNaorWinkler96]
Private equality test

[RindalRosulek17b]
Hash Table based PSI from OT

Oblivious
Transfer
Encoding

[ChenLaineRindal17]
Hash Table based PSI from HFE

Fully
Homomorphic

Encryption

1985 1990 1995 2000 2005 2010 2015 2020

[KKRT16]
Element-wise OT encoding

[GhoshJasper17]
Malicious secure

[This Work]
PIR+PSI

[PinkasSchneiderZohner14, …]
Cuckoo hashing PSI

A Sampling of PSI Over the Decades

38

1985 1990 1995 2000 2005 2010 2015 2020

