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• Contact discovery tells social network users which of their contacts are in the social network

• An insecure naïve hashing-based protocol is used in practice

• Vulnerable to

• Brute-force attacks (for small input domain, e.g. phone numbers)

• Comparison with hashes from later sessions

Motivation – Application: Contact Discovery
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• Contact Discovery should be efficient and scalable, and protect the privacy of user inputs.

• It runs once when a user initially joins a social network

• … and periodically to find contacts that join the social network later on.

Motivation – Application: Private Contact Discovery
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Private Set Intersection (PSI)
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Private Set Intersection (PSI)
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PSI for Contact Discovery

6

𝑋 = 𝑛 ≪ |𝑌| = 𝑁

𝑋 ∩ 𝑌

𝑋 𝑌
𝑋 ∩ 𝑌



• Communication linear in both sets 𝑂 𝑁 + 𝑛

• What about 𝑁 ≫ 𝑛?

• Insecure solution
• Send small set to other party
• Communication = 𝑂 min 𝑁, 𝑛

• PIR-PSI 

• Communication = 𝑂 𝑛 log
𝑁 log 𝑛

𝑛

• Client Computation = 𝑂 𝑛 log
𝑁 log 𝑛

𝑛
AES operations

• Server Computation = 𝑂 𝑁 log𝑛 AES operations

Status-Quo vs. PIR-PSI
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Plaintext Database Query
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Private Information Retrieval (PIR)
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2-Server PIR [CGKS95]
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2-Server PIR [CGKS95]
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Example: 2-Server Linear Summation PIR [CGKS95]
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• Point Functions: 𝑃𝐹 = {𝑓𝑖,𝑣: 𝑓𝑖,𝑣 𝑖 = 𝑣,

𝑓𝑖,𝑣 𝑥 = 0 ∀ 𝑥 ≠ 𝑖}.

• Distributed PFs allow 2 parties the secret-
shared PF evaluation, without revealing 𝑖, 𝑣.

• DPFs are described by short keys 𝑘1, 𝑘2 of 
length 𝑂 log𝑁 , where 𝑁 is the domain of 𝑖.

• By using 𝑣 = 1, i.e., a DPF returning 1 only at 
index 𝑖, we can express the plain text query 𝑞
and thus build 2-server PIR  with 𝑂 log𝑁
communication complexity.

• Instantiated efficiently with AES.

PIR from Distributed Point Functions (DPFs)
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Designated-Output PIR
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PIR Private Equality Test
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• Server performs Cuckoo hashing.

Cuckoo Hashing
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• Server performs Cuckoo hashing.

Cuckoo Hashing
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• Server performs Cuckoo hashing.

Cuckoo Hashing
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• Server performs Cuckoo hashing.

Cuckoo Hashing
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• Server performs Cuckoo hashing.

Cuckoo Hashing
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• Server performs Cuckoo hashing.

• To avoid collisions: use multiple hash functions - in this example: ℎ, ℎ′.

• In our implementation we used 3 hash functions and a cuckoo expansion factor of 𝑒 ≈ 1.4 for 
a cuckoo failure probability of 2−20 during one-time initialization.

Cuckoo Hashing
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• Every element can be located in two possible bins.

• The client computes all hash functions for every element.

Cuckoo Hashing
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• Every element can be located in two possible bins.

• To check if the server holds 𝑥1, the client runs a PIR-PEQ with the 2nd and 4th bin.

• In the full protocol: instead of single PIR-PEQ, we run all of them together in a PSI protocol.

Cuckoo Hashing
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1. Cuckoo Hashing

• Both servers compute the same cuckoo hash table for their 𝑁 elements.

2. DPF-PIR Query

• The client delegated extraction of 𝑛 elements from the cuckoo table.

3. Oblivious Shuffle

• One server receives the other server’s masked output and obliviously 
shuffles the PIR results to hide which Cuckoo hash function was used.

4. Small PSI

• A standard PSI protocol is used to determine intersection.

PIR-PSI Overview
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• Binning
• Instead of running full domain DPFs, we partition the server 

cuckoo table into bins and a smaller DPFs per bin. 

• Parallelization!

• Batching
• Instead of running DPF queries separately, 

run all queries in each bin in parallel.

• Only a single pass over the cuckoo table for multiple queries.

• Larger PIR Blocks
• PIR queries can return multiple cuckoo table entries.

• less communication, more computation in PSI.

Optimizations
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PIR-PSI with 3 PIR Servers
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• Communication and running time for 
𝑛 = 1 024 client elements and server 
set sizes 𝑁 ∈ {220, 224, 226, 228}.

• Benchmarked in Gigabit LAN, on 
1 machine with 36 x 2.3 GHz. 
Implementation set to use 4 threads.

• Client computation is ≈ 10% of total.

• Parameters for communication / 
computation trade-off

PIR-PSI Performance 
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• Combination of DPF-based PIR with state-of the art PSI to achieve scalable contact discovery.

• Efficient open-source C++ implementation on Github: github.com/osu-crypto/libPSI

• Many more details in the paper!

• Security Analysis

• Cuckoo Hashing Parameters

• Detailed performance analysis and comparison with related work

• Extensions

Conclusion
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• Some icons are made by Freepik from flaticon.com
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• Extra / Backup slides coming up next…
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